Somatic Tinnitus

Article in The international tinnitus journal · October 2017
DOI: 10.5935/0946-5448.20170021

10 authors, including:

Massimo Ralli
Sapienza University of Rome
48 PUBLICATIONS 312 CITATIONS

Antonio Greco
Sapienza University of Rome
131 PUBLICATIONS 851 CITATIONS

Armando De Virgilio
Sapienza University of Rome
80 PUBLICATIONS 752 CITATIONS

Marco De Vincentiis
Sapienza University of Rome
216 PUBLICATIONS 2,304 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Tinnitus: classification, diagnosis an treatment View project
- Oncological View project

All content following this page was uploaded by Arianna Di Stadio on 14 October 2017.
The user has requested enhancement of the downloaded file.
Somatic Tinnitus

Massimo Ralli¹
Antonio Greco²
Fabrizio Cialente²
Arianna Di Stadio³
Armando de Virgilio²
Lucia Longo²
Andrea Ciofalo²
Rosaria Turchetta²
Giancarlo Gianfrone²
Marco de Vincentiis²

¹Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
²Department of Sense Organs, Sapienza University of Rome, Italy
³IRCCS Fondazione Ospedale San Camillo of Venice, Italy

Send correspondence to:
Massimo Ralli
Department of Oral and Maxillofacial Sciences, Sapienza University of Rome. Viale del Policlinico 155, 00186, Rome Italy, E-mail: massimo.ralli@uniroma1.it

Paper submitted to the ITJ-EM (Editorial Manager System) on September 26, 2017; and accepted on October 10, 2017.

Abstract

Modulation of tinnitus characteristics such as pitch and loudness has been extensively described following movements of the head, neck and limbs, vertical or horizontal eye gaze, pressure on myofascial trigger points, cutaneous stimulation of the hands, electrical stimulation of the median nerve, and transcranial direct current stimulation. Modulation of tinnitus follows complex interactions between auditory and somatosensory afferents and can be favored by underlying somatic disorders. When tinnitus appears to be preceded or strictly linked to a somatic disorder, and therefore related to problems of the musculoskeletal system rather than of the ear, it is defined somatic tinnitus. A correct diagnosis and treatment of somatic disorders underlying tinnitus play a central role for a correct management of somatic tinnitus. However, the identification of somatic tinnitus may be complex in some cases. In this paper, after a general review of the current evidences for somatic tinnitus available in the literature, we present and discuss some cases of patients in which somatic modulation of tinnitus played a role—although different from case to case—in their tinnitus, describing the diagnostic and therapeutic approaches followed in each individual case and the results obtained, also highlighting unexpected findings and pitfalls that may be encountered when approaching somatic tinnitus patients.

Keywords: tinnitus, somatic tinnitus, somatosensory tinnitus, somatic modulation of tinnitus, hyperacusis, hearing loss.
INTRODUCTION

Tinnitus is defined as the perception of a sound in the absence of a matching external acoustic stimulus and is considered a symptom rather than a disease.

Tinnitus is present in 11.9-30.3% of the adult population, although only 0.5-3% refers to it as a condition that decreases quality of life. Tinnitus prevalence increases with age up to 65-69 years, after which it decreases. Social factors, such as lower income, poor education or occupational and recreational activity associated with noise exposure may influence the prevalence of tinnitus. Tinnitus is regularly associated with hearing loss, which can be diagnosed in up to 90% of patients, and with the use of ototoxic drugs, infections, and medical conditions that can affect the hearing function triggering cochlear damage, with neural changes in the central auditory system. These patients are considered to have otic tinnitus; extensive research has been done to identify protective drugs and management strategies for patients with tinnitus and hearing loss.

Tinnitus can be evoked or modulated by inputs from the somato-sensory, somato-motor and visual-motor systems in some individuals. This means that the psychoacoustic attributes of tinnitus (loudness and pitch) might change—though often only temporarily—following external stimuli, such as the forceful muscle contractions of head, neck and limbs, orofacial movements, eye movements in the horizontal or vertical axis, pressure on myofascial trigger points, cutaneous stimulation of the hand/fingertip region, and of the face; electrical stimulation of the median nerve and hand or finger movements. Modulation of tinnitus represents a good example of central integration in the central nervous system, following interactions between auditory and somatosensory afferents occur as early in the auditory pathways as in the cochlear nucleus, at the site of convergence of the projections from the auditory nerve and trigeminal and dorsal column ganglia and brainstem nuclei.

Somatic modulation of tinnitus may be associated to underlying somatic disorders. When tinnitus appears to be preceded or strictly linked to a somatic disorder, and therefore related to problems of the musculoskeletal system rather than of the ear, it is defined somatic tinnitus. Somatic tinnitus is considered to have otic tinnitus; extensive research has been done to identify protective drugs and management strategies for patients with tinnitus and hearing loss.

Considerations on somatic modulation of tinnitus

Common risk factors for tinnitus are male gender, age, and hearing problems. Patients with somatic tinnitus have shown different characteristics, being younger, with higher prevalence of female gender and unrelated to hearing loss (somatic tinnitus patients often have normal hearing) or tinnitus severity. The most common musculoskeletal conditions that underlie somatic tinnitus are temporomandibular joint (TMJ) and cervical spine (NECK) disorders.

As previously discussed, tinnitus can be modulated by muscle contraction and pressure applied to the head, neck and limbs, orofacial movements, eye movements in the horizontal or vertical axis, pressure on myofascial trigger points, cutaneous stimulation of the hand/fingertip region, and of the face; electrical stimulation of the median nerve and hand or finger movements. Modulation of tinnitus represents a good example of central integration in the central nervous system, following interactions between auditory and somatosensory afferents occur as early in the auditory pathways as in the cochlear nucleus, at the site of convergence of the projections from the auditory nerve and trigeminal and dorsal column ganglia and brainstem nuclei.

Somatic modulation of tinnitus may be associated to underlying somatic disorders. When tinnitus appears to be preceded or strictly linked to a somatic disorder, and therefore related to problems of the musculoskeletal system rather than of the ear, it is defined somatic tinnitus. Somatic tinnitus is considered to have otic tinnitus; extensive research has been done to identify protective drugs and management strategies for patients with tinnitus and hearing loss.

Table 1. Comparison of previous studies on tinnitus modulation.

<table>
<thead>
<tr>
<th>Author</th>
<th>Patients (#)</th>
<th>Year</th>
<th>Somatic Maneuvers (#)</th>
<th>Somatic Region</th>
<th>Prevalence of modulation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinchoff et al</td>
<td>93</td>
<td>1998</td>
<td>ns</td>
<td>TMJ, Head and Neck, Eye</td>
<td>85</td>
</tr>
<tr>
<td>Levine et al</td>
<td>70</td>
<td>1999</td>
<td>16</td>
<td>TMJ, Head and Neck, Limb</td>
<td>68</td>
</tr>
<tr>
<td>Sanchez et al</td>
<td>121</td>
<td>2002</td>
<td>16</td>
<td>TMJ, Head and Neck, Limb</td>
<td>65.3</td>
</tr>
<tr>
<td>Levine et al</td>
<td>62</td>
<td>2003</td>
<td>25</td>
<td>TMJ, Head and Neck, Limb</td>
<td>79</td>
</tr>
<tr>
<td>Abel et al</td>
<td>60</td>
<td>2004</td>
<td>25</td>
<td>TMJ, Head and Neck, Limb</td>
<td>83.3</td>
</tr>
<tr>
<td>Sanchez et al</td>
<td>38</td>
<td>2007</td>
<td>9</td>
<td>Head and Neck</td>
<td>57.9</td>
</tr>
<tr>
<td>Simmons et al</td>
<td>45</td>
<td>2008</td>
<td>42</td>
<td>TMJ, Head and Neck, Eye</td>
<td>78</td>
</tr>
<tr>
<td>An et al</td>
<td>45</td>
<td>2011</td>
<td>25</td>
<td>TMJ, Head and Neck</td>
<td>33.3</td>
</tr>
<tr>
<td>Won et al</td>
<td>163</td>
<td>2013</td>
<td>19</td>
<td>TMJ, Head and Neck</td>
<td>57.1</td>
</tr>
<tr>
<td>Ralli et al</td>
<td>310</td>
<td>2017</td>
<td>19</td>
<td>TMJ, Head and Neck</td>
<td>79.7</td>
</tr>
</tbody>
</table>

Average prevalence of modulation is 69%. Main somatic regions resulting in tinnitus modulation are temporomandibular joint (TMJ) and head and neck, followed by eye movements and limb. From Ralli et al, Somatosensory tinnitus: Current evidence and future perspectives.
29% parafunction of the occlusion and 35% a myopathy of the masticatory system.

The cervical spine and shoulder girdle are the second most frequent tinnitus-modulating region. Kapoula67 reported that 61% of the patients examined in their clinic could modulate their tinnitus with jaw movements, 43% with head movements, 39% with muscle pressure, 13% with eye movements, and 9% with a global muscular effort. Application of head and neck maneuvers revealed that 41% of patients could only increase their tinnitus loudness, 17% could only decrease their tinnitus loudness, and 10% could either increase or decrease their tinnitus loudness depending upon the maneuver. In a recent study from our group, maneuvers on cranio-cervical region induced tinnitus loudness increase in 59.1% and decrease in 40.9\%65.

A percentage of positive tinnitus modulation sorted by somatic region based on a recently published literature review68 is shown in Figure 1.

The identification of those patients able to modulate tinnitus that have an underlying somatic disorder participating to their tinnitus onset and persistence is important when approaching tinnitus patients. Furthermore, once selected, a correct diagnosis and treatment of the somatic disorders underlying tinnitus play a central role in patients with somatic tinnitus. However, the identification of somatic tinnitus may be complex in some cases. In a previous paper from our group on 310 patients with somatic tinnitus65, we found a significant association between positive history and positive tinnitus modulation for the same region, thus hypothesizing that such connection could help identify, among tinnitus patients, those with underlying head and neck dysfunctions that could play a role in their tinnitus, and who could benefit from further multidisciplinary investigation and physical therapy. In these cases, it is important to seek for cooperation of other specialists, such as dentists, gnathologists, osteopaths, orthopedics, physiotherapists for a second-level evaluation of a possible disorder affecting non-auditory regions.

Personal experience

We report and comment on five exemplificative cases of patients presenting to the Tinnitus Unit of the Sapienza University in Rome, Italy, in which somatic modulation of tinnitus played a role in the diagnosis and treatment of their tinnitus. In all cases, we evaluated audiological history, tinnitus characteristics, self-administered questionnaire scores, somatic dysfunction history and tinnitus modulation following a set of maneuvers as previously published66. A detailed description of the maneuvers used for somatic modulation examination is listed in Table 2. When positive history and modulation was found, patients were referred to the Service of Clinical Gnathology of the Oral and Maxillofacial Surgery Unit of our University for clinical TMJ and neck evaluation.

Case 1

A 43-year-old man lamenting persistent bilateral tinnitus in the high-pitch from 8 years presented to our Tinnitus Unit. He reported chronic work-related noise exposure for several years in his twenties (manufacturing industry). Otoscopic examination was normal. His Pure Tone Audiometry (PTA) showed a bilateral mild hearing loss in the 3-8 kHz frequencies (more evident in the 4-6 kHz range) with average threshold in this range of 35.6 dB HL (Figure 2); the left ear showed slightly worse

![Tinnitus modulation by somatic region (%)](image-url)

Figure 1. Percentage of patients with positive tinnitus modulation sorted by somatic region based on the review of the literature listed in Table 1. An average of 69.4% of patients with tinnitus showed some degree of modulation, while 30.6% reported no modulation. The region with the highest degree of modulation was the temporomandibular joint, followed by the head and neck region, limb, and eye. TMJ, temporomandibular joint. From Ralli et al, Somatosensory tinnitus: Current evidence and future perspectives (52).
Table 2. Comparison of previous studies on tinnitus modulation.

<table>
<thead>
<tr>
<th>Jaw Maneuvers</th>
<th>TMJ 1: Clench teeth together</th>
<th>TMJ 2: Open the mouth with restorative pressure</th>
<th>TMJ 3: Protrude jaw with restorative pressure</th>
<th>TMJ 4: Slide jaw to left with restorative pressure</th>
<th>TMJ 5: Slide jaw to right with restorative pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>performed by patient</td>
<td>performed by examiner</td>
<td>performed by examiner</td>
<td>performed by examiner</td>
<td>performed by examiner</td>
</tr>
</tbody>
</table>

| Neck Maneuvers | NECK 1: Resist pressure applied to the forehead | NECK 2: Resist pressure applied to the occiput | NECK 3: Resist pressure applied to the vertex | NECK 4: Resist pressure applied under the mandible | NECK 5: Resist pressure applied to the right temple | NECK 6: Resist pressure applied to the left temple | NECK 7: Pressure to the right zygoma with head turned right | NECK 8: Pressure to the left zygoma with head turned left | NECK 9: Pressure to the left temple with head turned right and tilted to the left (left sternocleidomastoid muscle) | NECK 10: Pressure to the right temple with head turned left and tilted to the right (right sternocleidomastoid muscle) | NECK 11: Forward flection of the neck | NECK 12: Backward flection of the neck | NECK 13: Turn head to the right | NECK 14: Turn head to the left |
|------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | performed by examiner | performed by patient | performed by patient | performed by patient | performed by patient |

Maneuvers used for somatic testing in our study as recently published in a previous work of the authors\(^6\). Some were performed by patient, some by the examiner (shown next to each maneuver). During somatosensory examination, patients were asked to perform a specific movement or to resist to a pressure applied by the examiner against the head, neck and jaw. Each contraction was held for 10 seconds; in case of positive tinnitus modulation examiner waited for tinnitus to return to baseline and jaw. Each contraction was held for 10 seconds; in case of positive to resist to a pressure applied by the examiner against the head, neck and jaw. Each contraction was held for 10 seconds; in case of positive.

Figure 2. Pure Tone Audiometry showing a bilateral mild hearing loss in the 3-6 kHz frequencies with average threshold in this range of 32.5 dB HL.

Comments on this case

This case is an example of a patient with auditory tinnitus most probably deriving from peripheral inner ear damage due to previous exposure to loud sounds. Tinnitus appeared about 10 years after prolonged noise exposure, as often seen in similar cases\(^15\). Although tinnitus could be successfully modulated with both TMJ and NECK maneuvers, no somatic disorder was found at a clinical level. Furthermore, this patient did not self-report history for somatic dysfunctions. This case demonstrates that tinnitus modulation can be found even when no somatic disorder is present; in fact, somatic modulation of tinnitus is a widespread condition that can be present with or without underlying somatic disorders\(^31\). Furthermore, as previously discussed, several authors reported a large capability of somatic tinnitus modulation in multiple patient series ranging between 65.3% and 83.3%\(^32\). In this patient, the negative history for self-reported somatic disorder suggests caution while taking into account a somatic origin for his tinnitus.

Case 2

A 22-year-old woman reporting continuous, low-pitch, left-sided tinnitus from two years was admitted to our center. No significant noise exposure was described by the patient. Otoscopy and PTA were normal (Figure 3). Distortion Product Otoacoustic Emissions (DPOAE) were recorded in both ears and appeared within normal range (Figure 4). Tinnitogram showed low-pitched tinnitus with a frequency between 250 and 500 Hz. The patient reported a 3-year history of bruxism during night and TMJ pain in the morning; symptoms started between the last year of high school and the beginning of her university studies. THI score was 52, further psychological evaluation revealed an anxious phenotype. Somatic modulation was positive mainly for TMJ, with increased tinnitus loudness in 4/5 (80%) TMJ maneuvers and in 2/14 (14.3%) NECK maneuvers. Gnathological examination revealed the presence of a clinically evident TMJ disorder following DC/TMD Axis I classification\(^74\). The patient was treated with a nocturnal occlusal splint for a period.
of 12 months, reporting a significant improvement in bruxism and TMJ pain and a complete resolution of her tinnitus about 8 months after initial assessment. THI score recorded 12 months after first admission to our clinic was 14.

Comments on this case

This is a typical case of somatic tinnitus following a TMJ disorder. Bruxism is also strongly linked to the stress and anxiety disorder of the patient that coincided with a critical time in her life (end of high-school studies with final exams, and beginning of a new cycle of education). At first examination, there were many factors suggesting the presence of somatic tinnitus. Normal hearing, normal DPOAE and no history of noise exposure almost ruled out the presence of auditory tinnitus although high-frequency (> 8 kHz) hearing loss was not studied; when evaluating somatic history and modulation of tinnitus, a clear match was found between self-reported history for TMJ dysfunction and tinnitus modulation in the TMJ region.

Furthermore, female sex and unilateral tinnitus have been described to be more associated to somatic tinnitus. The approach with this patient has been centered on treating the gnathological condition, with the use of an occlusal splint. Results on TMJ dysfunction treatment and, especially, on tinnitus have been very good, although tinnitus disappearance occurred after a rather long time (6 months) from the beginning of gnathological treatment. It is therefore important, for a better compliance, to discuss with patients that begin a somatic treatment for their tinnitus that timing plays a central role in the effects on tinnitus perception, and somatic treatment should not be discontinued if tinnitus perception does not change in the short or medium term.

Case 3

A 74-year-old woman presented to our tinnitus unit with a long history of bilateral high-pitched tinnitus more annoying in the left ear. Otoscopy was normal for age. PTA showed a moderate bilateral symmetric hearing loss with a descending curve on high frequencies (Figure 5). Speech discrimination was consistent with PTA. Tinnitogram showed a high pitch tinnitus around 3 kHz. THI score was 38, Hearing Handicap Inventory (HHI) score was 50. Self-reported somatic history was positive for TMJ and NECK dysfunctions; patient reported a bilateral TMJ click occurring from at least 10 years associated to TMJ pain when chewing, as well as chronic cervical pain more evident in the morning and upon awakening from a nap, probably due to somatic factors like stretching of the neck muscles when her head passively falls forward while sleeping in a sitting position. Tinnitus modulation was strongly positive resulting in an increased loudness following 5/5 (100%) TMJ maneuvers and decreased loudness following 12/14 (85.7%) NECK maneuvers. Patient was referred to multidisciplinary somatic evaluation to the Gnathology Service of our University; diagnosis of a clinically evident TMJ disorder was made (Disc displacement with reduction with intermittent locking - ICD-9 524.63; Degenerative joint disease - ICD-9 715.18; Myalgia, Myofascial pain - ICD-9 729.1); associated to C4-C5 herniation seen with cervical Magnetic Resonance Imaging. Patient was treated with occlusal splint and physical cervical treatment with heat.
application, deep tissue massage, electrical stimulation, and ultrasound in the cranio-cervical region for 6 months with significant improvement in her somatic symptoms. In addition, antioxidant drugs were administered at cycles for a period of 6 months. At the 6-month tinnitus evaluation in our center, the patient reported lower tinnitus annoyance (THI = 22) and slightly reduced self-perceived tinnitus loudness. No significant changes were found in hearing threshold.

Comments on this case

In this case, a combination of auditory and somatic tinnitus can be found: the somatic component plays a role in tinnitus and sums to the probable effects of presbycusis resulting in increased loudness and annoyance of her tinnitus. The identification of a somatic origin for her tinnitus thanks to the matching of self-reported history and modulation in the same somatic regions helped in addressing this patient to multidisciplinary somatic evaluation and treatment. Furthermore, the characteristics of tinnitus modulation found in this patient are consistent with what reported in the literature by some authors. TMJ maneuvers induced an increase in tinnitus loudness, while NECK maneuvers induced a decrease of loudness. In a previous study from our group we also found that maneuvers on TMJ mainly resulted in increased loudness of tinnitus (94.3%), while maneuvers on the cranio-cervical region induced tinnitus loudness increase in 59.1% and decrease in 40.9%. Due to the multiple causes of tinnitus in this patient, the persistence of tinnitus found 6 months after initial assessment should be expected; however, a correct identification and treatment of the somatic components probably contributed in the reduction of tinnitus loudness and annoyance and improved quality of life of this patient.

Case 4

An 18-year-old man with persistent single-sided “buzzing” tinnitus in the right ear started 2 years earlier presented to our center. No exposure to loud sounds was disclosed. The patient also reported reduced tolerance to sounds of moderate intensity in day-by-day activities that induced him to avoid social events and significantly limited his daily activities.

Tinnitus started right after a maxillofacial trauma with severe psychological correlations: in fact, he was a victim of street violence being beaten for unknown reasons. He was hospitalized for 18 days and diagnosed with fracture of the right zygomatic bone that required surgical intervention. After trauma, the patient was diagnosed with post-traumatic stress disorder and was assisted by a psychologist for two years. Hyperacusis symptoms started about 6 months after the onset of tinnitus.

PTA and DPOAE were within normal range. THI score was very high (score = 86), Hyperacusis Questionnaire (HQ) score was 34 and Gerauschuberempfindlichkeit Questionnaire (GUF) score was 41. Loudness Discomfort Levels (LDL) recorded in basal conditions showed a reduced tolerance to sounds. We also performed LDL while asking patient to clench his teeth together: interestingly, a remarkable further reduction of sound tolerance was noted (Figure 6). Tinnitus modulation was positive for 5/5 (100%) TMJ maneuvers and 18/19 (94.7%) NECK maneuvers.

During interview, the patient defined his situation as follows: “Sounds penetrate every aspect of my life, and their presence causes pain; the duration of exposure contributes to the intensity of the pain. The more loud and long sounds are, the more pain is acute and long-lasting. Even the lowest and most imperceptible sounds are amplified and distorted in such a way to invade every little aspect of my daily activities. Sometimes, I cannot even talk. I noticed a sharp decrease in the threshold of pain caused by sound”. Furthermore, the patient carefully described a list of daily activities, for both his private and social life, that were subjectively strongly limited by the hyperacusis condition. The complete list is shown in Table 3.

Patient was addressed to second level gnathological evaluation that found no residual consequences of the maxillo-facial trauma, completely resolved without consequences on TMJ and NECK; no other somatic disorders requiring treatment were found. Based on these results, the patient was addressed to psychiatric evaluation and cognitive behavioral therapy was proposed as a treatment.

Comments on this case

This represents a complicated case of a young patient in which somatic and psychological factors contributed to development of a highly annoying tinnitus associated to hyperacusis that significantly affected his daily activities. In this case, although history was strongly suggestive of a somatic origin of tinnitus, the psychological element assumed over time a higher and, when approaching our tinnitus unit, prevalent role. This is even more evident while reading the list of daily activities described by the patient as strongly limited by the hyperacusis (Table 3).

![Figure 6. Pure Tone Audiometry for case 4 showing normal hearing for all frequencies. Loudness Discomfort Levels (LDL) recorded in basal conditions showed a reduced tolerance to sounds. When recording LDL during somatic testing (ST) asking patient to clench his teeth together, a significant reduction of sound tolerance was noted.](image)
Somatic modulation was impressively high in this case, and apparently had a role in further reducing sound tolerance as shown by LDL threshold performed during teeth clenching. However, no residual somatic disorder was found at gathological examination. Schecklmann79 evaluated the prevalence of somatic modulation in patients with and without hyperacusis, finding it significantly higher in hyperacusic patients. The authors also reported a significantly higher presence of self-reported somatic history in hyperacusis patients. The increased prevalence of somatic modulation found by the authors in hyperacusis patients could be due to increased peripheral somatic activation or central hypersensitivity to somatic inputs. The latter is supported by neurophysiological findings that show increased sensitivity to multisensory stimuli in patients with hyperacusis, which may be linked to a hypervigilance network86-84. Also, Schecklmann79 and Gilles85 found worse tinnitus and depression scores in patients with hyperacusis than in those without. Higher tinnitus loudness, discomfort and annoyance could be therefore explained by the involvement of emotion-related neural circuits86-90. This evidence suggests that, when evaluating somatic tinnitus patients, clinicians should consider the possible amplification of the somatic component by comorbid hyperacusis and other associated conditions, as hyperacusis could result from a generalized hypersensitivity disorder involving multiple sensory pathways. Therefore, it is recommended to determine if hyperacusis is present in patients with somatic tinnitus, to carefully select patients whose tinnitus would benefit from a somatic therapy.

Case 5

52-year-old woman with a 6-month history of right sided low-pitched tinnitus presented to our Tinnitus Center. PTA showed a mild bilateral hearing loss in the

Table 3. List of daily activities limited by hyperacusis in case 4.

Private Life

- Listen to music
- Watch movies
- Get out of the house if it is raining
- Stay in the bathroom while flushing
- Stay in the kitchen if there are fries that make noise while cooking
- Be in a room with noises of plates and glasses slipped involuntarily
- Be in a room with noises of electronic tools such as washing machine, blender, electric razor, aerosol machine and vacuum cleaners
- Dog barking or bird chirping
- Play musical instruments
- Sing or just raise the voice
- Use the whistle

Social Life and Studying

- Use headphones
- Attend a concert of any kind
- Attend sporting events
- Go to cinema
- Go to disco
- Stay in a pub, restaurant or bar with friends with music background
- Stay on busy roads (e.g. shopping streets or crowded squares)
- Stay close to truck engines or ambulances
- Stay in close proximity to airports
- Stay near the dock on the arrival of the subway train
- Climb on wagons of loud public transport (e.g. glasses and doors that shake and bump on buses, non-sounded engines, metro wagons with open windows)
- Go to parties, social gatherings, festivals or other noisy events
- Talk to other people for several consecutive minutes
- Repeat aloud while studying
- Attend university lectures in large classrooms where microphone is needed
- Attend a demonstration
- Participate in public competitions where a microphone is needed
- Participate in book or movie presentations

List of daily activities, for both private and social life, that were reported by patient as strongly limited by his hyperacusis.
high frequencies (4-8 kHz) with average threshold in this range of 28.3 dB HL (Figure 7). Otoscopic examination was normal. Tinnitus pitch around 1 kHz. THI score was 16, HHI was 14. She reported a long-time history of bilateral TMJ clicking with three episodes of subluxation of the mandible requiring medical assistance. Somatic tinnitus maneuvers were slightly positive for TMJ (increased loudness in 1/5-20%) and strongly positive for NECK (decreased loudness in 14/19-73.7%). The patient was referred to a gnatologist for somatic evaluation; she received a diagnosis of TMJ disorder (Degenerative joint disease - ICD-9 715.18; Subluxation - ICD-9 830.1; Disc displacement with reduction with intermittent locking - ICD-9 524.63), while no NECK disorders were found. The patient was treated with dental splint and myorelaxant drugs for 6 months. When tinnitus was evaluated 6 months after the beginning of somatic treatment, the patient reported a significantly lower loudness and annoyance of tinnitus, however still present, with a THI score of 12 and HHI of 14. A new somatic tinnitus modulation examination revealed a reduction of NECK positive maneuvers (3/19-15.8%).

Comments on this case

This is a case of somatic tinnitus in which somatic modulation did not match self-reported history of somatic dysfunction, and may confuse the examiner. In fact, although modulation was strongly present in the NECK region, no NECK disorder was found; instead, a severe TMJ disorder was diagnosed even if TMJ modulation was mild (only 1 positive maneuver out of 5). However, after treating the TMJ disorder, a reduction in modulation following somatic maneuvers in the NECK region was found. This could be explained by the possible effect of the TMJ disorder on the NECK ascending pathways, resulting in a modulation in this region as well91-94. This suggests to carefully evaluate the somatic component, especially when a notable history of TMJ dysfunction is suspected and no other significant risk factors are present.

CONCLUSION

Current literature and clinical experience confirm the wide presence of somatic modulation of tinnitus, thus rising interest on when this should be considered as an indicator of an underlying somatic disorder that requires multidisciplinary diagnostic and therapeutic approach. The cases presented in this paper, although representing only a small part of the case histories observed in our center, are shown as examples of the many variables that can be encountered in daily clinical practice with tinnitus patients, and suggest caution in relying on tinnitus modulation alone to define patient treatment. When a somatic disorder is suspected, however, a multidisciplinary approach is encouraged, as somatic disorders have been shown to play a role in a large portion of tinnitus sufferers and, when correctly identified and treated, represent a valid therapeutic option for tinnitus treatment.

Acknowledgments

We thank Italian Association for Research on Deafness (AIRS Onlus) for support in the management of patients.

Conflicts of Interest and Source of Funding

The authors declare that they have no conflicts of interest. The authors have not received financial support for this research.

REFERENCES

