- Apr 6, 2020
- 1,033
- Tinnitus Since
- 2016
- Cause of Tinnitus
- 2016: headphones, 2020: worsened thanks to Rammstein
Here's an interesting article about Dr. Josh McDermott, a neuroscientist at MIT, who is currently working on computational models that replicate the human auditory system in hopes of improving treatments for hearing loss.
(....)
The use of improved computational models allows us to gain a better understanding of how the brain perceives sound and may lead to new / better treatments to improve hearing, according to the researcher.
Link:
Josh McDermott seeks to replicate the human auditory system
''So far, even the most sophisticated computational models cannot perform such tasks as well as the human auditory system, but MIT neuroscientist Josh McDermott hopes to change that. Achieving this goal would be a major step toward developing new ways to help people with hearing loss, says McDermott, who recently earned tenure in MIT's Department of Brain and Cognitive Sciences''
"Our long-term goal is to build good predictive models of the auditory system," McDermott says. "If we were successful in that goal, then it would really transform our ability to make people hear better, because we could design a computer program to figure out what to do to incoming sound to make it easier to recognize what somebody said or where a sound is coming from."
"Our long-term goal is to build good predictive models of the auditory system," McDermott says. "If we were successful in that goal, then it would really transform our ability to make people hear better, because we could design a computer program to figure out what to do to incoming sound to make it easier to recognize what somebody said or where a sound is coming from."
(....)
''One aspect of audition that McDermott's lab focuses on is "auditory scene analysis," which includes tasks such as inferring what events in the environment caused a particular sound, and determining where a particular sound came from. This requires the ability to disentangle sounds produced by different events or objects, and the ability to tease out the effects of the environment. For instance, a basketball bouncing on a hardwood floor in a gym makes a different sound than a basketball bouncing on an outdoor paved court.''
"Sounds in the world have very particular properties, due to physics and the way that the world works," McDermott says. "We believe that the brain internalizes those regularities, and you have models in your head of the way that sound is generated. When you hear something, you are performing an inference in that model to figure out what is likely to have happened that caused the sound."
"Sounds in the world have very particular properties, due to physics and the way that the world works," McDermott says. "We believe that the brain internalizes those regularities, and you have models in your head of the way that sound is generated. When you hear something, you are performing an inference in that model to figure out what is likely to have happened that caused the sound."
The use of improved computational models allows us to gain a better understanding of how the brain perceives sound and may lead to new / better treatments to improve hearing, according to the researcher.
"Hearing impairment is the most common sensory disorder. It affects almost everybody as they get older, and the treatments are OK, but they're not great," he says. "We're eventually going to all have personalized hearing aids that we walk around with, and we just need to develop the right algorithms in order to tell them what to do. That's something we're actively working on."
Link:
Josh McDermott seeks to replicate the human auditory system